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ABSTRACT: Based on kinetic considerations, the following equation, connecting the
zero-shear viscosity of polymeric solutions with temperature and the molecular weight
and concentration of the polymer was derived: RTln �R � KB�Mn /(1 � B�Mn), where
�R is relative viscosity (i.e., the ratio of the solution viscosity to the solvent viscosity);
K represents a change in enthalpy of viscous flow from a pure solvent to a pure polymer
at the same temperature or from a polymer of low molecular weight (M) to one of higher
molecular weight, and has the dimensions of energy (e.g., J/mol) because the ratio
B�Mn/(1 � B�Mn) is dimensionless; � is the volume or molar fraction of a polymer in
solution (concentration units can be used in dilute solutions); B is a constant related to
the stiffness of the chains of the polymer in a given solvent; and at B�Mn �� 1, ln �R

� K/RT. The equation describes published data on the zero-shear viscosity of four polar
and nonpolar polymers in nine solvents with R2 � 0.98. This approach allows the use
of solutions of moderate concentrations for the characterization of polymers and opens
a way for a single-point degree of polymerization (DP) determination of polymers at
moderate concentrations if constants K, B, and n of the equation are known. © 2002
Wiley Periodicals, Inc. J Appl Polym Sci 85: 2064–2073, 2002
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BACKGROUND

Assumptions

In the absence of an established theory of low
molecular weight liquid viscosity, much less an
established theory of the liquid state, we must
remember that theories of transport properties of
polymeric solutions are not “built on rock”. On the
other hand, the difference in size between a poly-
mer molecule and a solvent molecule is so great
that the properties of a solvent play a secondary
role in the flow phenomena of polymeric solutions.

There are two schools of thought on the viscos-
ity of liquids and solutions. One emphasizes the
importance of free volume for the possibility of

molecular movement and another stresses the en-
ergy necessary to break intermolecular bonds and
jump into another position. In the Macedo and
Litovitz (ML) theory of viscosity of liquids,1,2 fea-
tures of both absolute rate and free-volume theo-
ries have been combined to account for the neces-
sity of having an adequate energy and a sufficient
local free volume for a molecule to jump from one
lattice site to another. Correspondingly, viscosity
is expressed as:

� � A0 � exp��/f � E*f /RT� (1)

where f is the fractional free volume, E*f is the
value of the potential energy barrier at a constant
fractional free volume f, and � is a factor account-
ing for the overlap of free volume (0.5 � � � 1.0).

This work will be limited to the zero-shear
viscosity of polymeric solutions far from glass
transition temperatures (Tg) and in the absence of
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external fields. Molecules or kinetic segments of
macromolecules must have a sufficient energy to
jump between possible locations. This energy
rises steeply for more polar and or larger mole-
cules. For this reason, the viscosity of even non-
polar polymers should be rate-controlled rather
than free-volume-controlled processes, except for
at a small but technologically very important area
below Tg � 50 °C. Progress of Femtochemistry3

confirmed many postulates of the Theory of Rate
Processes. Following Eyring,4 we can write

� � �0 � exp���H‡ � T�S‡�/RT�) (2)

Usually, entropy of activation is negative and
small (especially, for monomolecular processes);
therefore, it is absorbed into Arrhenius pre-expo-
nential factor. In this work we will consider zero-
shear viscosity as a function of enthalpy of acti-
vation only.

According to Van Ness,5 “classical thermody-
namics furnishes no explicit definitions of these
(enthalpy and entropy of activation – V.Y.) prop-
erties. Further insight can be gained only through
study of statistical mechanics and molecular the-
ory.”

Properties of solutions, including their thermo-
dynamic properties, do depend on their composi-
tion. For instance, Wei and Rowley6 were able to
express the viscosity of solutions of mixtures of non-
aqueous low molecular weight solvents through
thermodynamically related factors such as NRTL
(nonrandom two-liquid) parameters derived from
vapor–liquid equilibria and excess enthalpy of
mixing. There is no corresponding treatment for
polymeric solutions. As a first approximation, let
us suggest that the enthalpy of flow is propor-
tional to the polymer molar or volume fraction
and square root of its molecular weight following
Einstein and Flory hydrodynamic approach. In
essence, we are expanding the Einstein–Flory ap-
proach into the region of finite concentrations:

�H � RT ln �R � K�3�M0.5 (3)

where �R is relative viscosity (i.e., the ratio of the
solution viscosity to the solvent viscosity), K
� 2.5k1NA(ro

2)3/2/M, NA is Avogadro’s number, M
is the molecular weight of a polymer. r0 is an
unperturbed radius of a macromolecular coil, and
� is an expansion factor (ratio of the radii of
macromolecules in good to very poor or 	 solvent).

By analogy with the well-known Mark–Hou-
wink equation, eq. 3 can be rewritten as:

�H � RT ln �R � K�Mn (4)

where 0.5 � n � 1.0
Equations 3 and 4 suggest that the logarithm

of viscosity will linearly increase with the poly-
mer concentration, which is correct only in the
limit of low concentrations. The expansion factor
� has been experimentally7,8 shown to decrease
with the polymer concentration in a complicated
way. (It is entirely possible that the physical con-
traction of macromolecular coils with the increase
in the solute concentration is only one of the
causes of the nonlinear dependence of enthalpy on
the solute concentration. Formally, at sufficiently
high concentrations, we must use activities in-
stead of concentrations.) One can change eq. 4 to
take into account the dependence of � on concen-
tration as follows:

�H � RT ln �R � K�Mn�m� (5)

This equation implies that the size of the macro-
molecular coil does decrease with the polymer
concentration. Actually, this idea has been tested
before.9

Alternatively, it is well known11–23 (Table I)
that the apparent activation energy of viscous
flow does increase with a polymer concentration
(see also Hammes24). Depending on the system
studied, the increase can be linear, Langmuirian,
or exponential with concentration. However,
there is no explanation of this phenomenon. In
fact, the effect of a polymer concentration and
molecular weight on zero-shear viscosity is one of
the primary unsolved problems in modern rheol-
ogy.

Analysis of Table I suggests that the majority
of researchers found that the calculated Eact
changes with polymer concentration in a linear,
or Langmuir adsorption isotherm, fashion. Re-
sults of Oyanagi and Matsumoto18 on Eact of vis-
cous flow for aqueous solutions of poly(vinyl alco-
hol) are shown in Figure 1, and the results shown
in Figure 2 indicate that the data can be described
by the Langmuir equation (R2 � 0.98 for all three
curves). By comparison, the same data are plotted
in Figure 3 in the log–log scale to test the fit to a
power law. It appears that the fit of the power law
is inferior in this case. In essence, the data of
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Oyanagi and Matsumoto18 (Figures 1–3) are ex-
pressed as:

Eact � KB�Mn/�1 � B�Mn� (6)

The enthalpy equals activation energy less the
value of 2RT for condensed phases,24 so eq. 5 can
be rewritten as follows:

�H � RT ln �R � KB�Mn/�1 � B�Mn� (7)

where �R is relative viscosity (i.e., the ratio of the
solution viscosity to the solvent viscosity); K rep-
resents a change in the enthalpy of viscous flow
from a pure solvent to a pure polymer (eq. 7 can
describe the effect of molecular weight on the
viscosity of polymer melts provided the tempera-
ture of the melt is �Tg � 50 °C of a polymer) at
the same temperature (or from a polymer of low to
higher molecular weight) and has the dimension
of energy (e.g., J/mol) because the ratio B�Mn/(1

Table I Effect of the Solution Concentration on the Apparent Activation Energy

Author System Studied
Limit of

Concentration Synopsis

Bleishmidt, N., et al.11 Cellulose in n-methyl-
morpholine-oxide (MMO)

9–27% Eact increases with the cellulose
concentration

Mikezhova, J.;
Quadrat, O.12

Several vinyl polymers in
different solutions

Dilute
solutions

Eact increases with the polymers
concentration, shape depends
on solution quality

Miroshnichenko, N.,
et al.13

Water-soluble cellulose acetates
in several solvents

8–16% Eact increases with the cellulose
concentration in a
Langmuirian fashion

Navard, P.; Houdin,
J.14

Cellulose in (MMO) 5–30% Eact increases with the cellulose
concentration in a linear
fashion

Tager, A.; Dreval, V.15 Polystyrene and polyisobutylene
in several solvents

0–0.7 volume
fraction

Eact increases with the polymers
concentration, shape depends
on solution quality

Tager, A.; Botvinnik,
G.16

Polyisobutylene in isooctane 0–1.0 volume
fraction

Eact increases with the polymers
concentration as an S-shaped
curve

Tager, A.; Dreval, V.;
Khasina, F.17

Polyisobutylene in isooctane 0–1.0 volume
fraction

Eact increases with the polymers
concentration as an S-shaped
curve

Oyanagi, Y.;
Matsumoto, M.18

Poly(vinyl alcohol) in water 0–20% Eact increases with the cellulose
concentration in a
Langmuirian fashion

Johnson, M., et al.19 Polystyrene in decalin 10–40% Eact increases with the polymers
concentration in a linear
fashion

Landel, R.; Berge, J.;
Ferry, J.20

Cellulose tributyrate in
trichloropropane

0–50% Eact increases with the cellulose
concentration in a
Langmuirian fashion

Ferry, J.; Crandine,
L.; Udy, D.21

Polyisobutylene in decalin 10–20% Eact increases with the polymers
concentration in a linear
fashion

Pezzin, G.; Gligo, N.22 Poly(vinyl chloride) in
cyclohexanone

9–20% Eact increases with the polymers
concentration in an almost
linear fashion

Yano, T.23 Polymethyl methacrylate in
diethylphthalate

10–40% Eact increases with the polymers
concentration in an
exponential or power law
fashion
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� B�Mn) is dimensionless; � is the volume frac-
tion of a polymer in solution (concentration units
can be used in dilute solutions); B is a scaling
constant (later on we will show that it is related to
the stiffness of polymer coil); and , at B�Mn �� 1,
ln �R � K/RT.

Equation 7 has remarkable properties. Let us
tabulate the following exponential function at dif-
ferent ratios of A/B and plot the Y (viscosity)
values versus X (concentration and molecular
weight) values on a log–log scale:

Y � exp	Ax/�1 � BX�
 (8)

where X represents �M0.5, A represents KB /RT,
and B is arbitrarily set at 0.1. The tabulated and
calculated values are given in Tables II and III,
respectively, and Figures 4 and 5 depict a familiar
picture of two intersecting straight lines. The

slope of the upper line can vary between one and
five and depends on the A/B ratio; it is equal to
�3.4 at the A/B ratio of 30. The slope of the lower
line can vary between zero and one. The R2 of the
upper line is 0.998 and that of the lower line is
�0.92. It is well known that an exponential func-
tion Y � eX will increase faster than the power
function Y � Xn at any value of n. It turns out
that, when log10 Y � log10 [exp(Ax/(1 � Bx))] �
2.303�AX / (1 � BX), the function is nearly linear
on a log–log scale if BX is not significantly greater
than unity. The transition point between two
lines comes at X values approaching 1.

The lines in Figure 5, representing the upper
part of the lines (R2 � 0.998), are slightly S-
shaped; a scatter in experimental data will tend
to obscure this slight curvature. Note that these
lines represent a change of 2.5 orders of magni-
tude in the X values (C�M product) and up to 10
orders of magnitude in the Y values (viscosity).

With regard to suspensions, there are several
equations25–27 wherein the viscosity of concen-
trated suspensions was described as follows:

� � �s � exp	A � ��/�max�/�1 � �/�max�
 or

ln �R � A��/�max�/�1 � �/�max� (9)

and

�R � A � ��/�max�
1/3/�1 � ��/�max�

1/3 (10)

suggesting that, indeed, the viscosity (or �H) of
concentrated suspensions rises much faster than
the viscosity (or �H) of solutions. The viscosity of

Figure 1 Effect of concentration on apparent Eact

(Oyanagi and Matsumoto18 data).

Figure 2 Test of Langmuir equation for Eact versus
PVAlc concentration (Oyanagi and Matsumoto18 data).

Figure 3 Test of power law for Eact versus PVAlc
concentration (Oyanagi and Matsumoto18 data).
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suspensions goes to infinity or to the solid body
viscosity at a certain volume fraction of particles
when they are touching each other. Even though

Vand26 arrived at eq. 9 from purely hydrodynamic
viewpoint, the equation is very similar to the sug-
gested eq. 7. In effect, eqs. 9 and 10 suggest that

Table II Log–Log Data Generated from Equation 7 for 10 < A/B < 35

X Log X

Log Y (Log[EXP(AX/(1 � BX)]) at

A/B � 10 A/B � 15 A/B � 20 A/B � 25 A/B � 30 A/B � 35

0.0001 �4.000 0.004339 0.006508 0.008677 0.010847 0.013016 0.015185
0.0002 �3.699 0.006133 0.0092 0.012266 0.015333 0.0184 0.021466
0.0005 �3.301 0.009689 0.014534 0.019379 0.024224 0.029068 0.033913
0.001 �3.000 0.01369 0.020535 0.027381 0.034226 0.041071 0.047916
0.002 �2.699 0.019336 0.029004 0.038672 0.048339 0.058007 0.067675
0.005 �2.301 0.030494 0.04574 0.060987 0.076234 0.091481 0.106728
0.01 �2.000 0.042999 0.064499 0.085999 0.107499 0.128998 0.150498
0.02 �1.699 0.060562 0.090843 0.121124 0.151405 0.181686 0.211967
0.05 �1.301 0.094987 0.142481 0.189974 0.237468 0.284962 0.332455
0.1 �1.000 0.133126 0.199689 0.266252 0.332815 0.399378 0.465942
0.2 �0.699 0.185908 0.278862 0.371817 0.464771 0.557725 0.650679
0.5 �0.301 0.286812 0.430218 0.573624 0.71703 0.860436 1.003842
1 0.000 0.394813 0.59222 0.789626 0.987033 1.184439 1.381846
2 0.301 0.538088 0.807132 1.076176 1.34522 1.614264 1.883308
5 0.699 0.793647 1.190471 1.587294 1.984118 2.380941 2.777765
7.5 0.875 0.933669 1.400503 1.867337 2.334172 2.801006 3.26784
10 1.000 1.043406 1.565109 2.086812 2.608515 3.130218 3.65192
12.5 1.097 1.134394 1.701591 2.268788 2.835985 3.403182 3.970379
15 1.176 1.212439 1.818659 2.424879 3.031099 3.637318 4.243538
17.5 1.243 1.280932 1.921398 2.561864 3.20233 3.842796 4.483262
20 1.301 1.342044 2.013066 2.684088 3.355109 4.026131 4.697153
35 1.544 1.614292 2.421439 3.228585 4.035731 4.842877 5.650024
50 1.699 1.798907 2.69836 3.597813 4.497267 5.39672 6.296173
65 1.813 1.938514 2.907771 3.877028 4.846285 5.815542 6.784799
85 1.929 2.083295 3.124942 4.166589 5.208236 6.249884 7.291531
100 2.000 2.171472 3.257209 4.342945 5.428681 6.514417 7.600153
250 2.398 2.660376 3.990563 5.320751 6.650939 7.981127 9.311315
500 2.699 3.000901 4.501352 6.001802 7.502253 9.002703 10.50315
750 2.875 3.181299 4.771948 6.362598 7.953247 9.543896 11.13455
1000 3.000 3.299539 4.949308 6.599078 8.248847 9.898617 11.54839

Table III Representation of Log–Log Data Generated from Equation 7 for 10 < A/B < 35

Curve A/B Range of X Constant

Standard
Error of
Y (est.) R2

No.
Observations

Degrees
of

Freedom Slope

Standard
Error of

Coefficient

Upper 10 5 � X � 1000 �0.0941 0.0382 0.9980 16 14 1.1333 0.0135
15 5 � X � 1000 �0.1412 0.0571 0.9980 16 14 1.700 0.0203
20 5 � X � 1000 �0.1883 0.0763 0.9980 16 14 2.2667 0.0270
25 5 � X � 1000 �0.2354 0.0952 0.9980 16 14 2.8334 0.0339
30 5� X � 1000 �0.2824 0.1143 0.9980 16 14 3.4000 0.0406
35 5� X � 1000 �0.3295 0.1333 0.99805 16 14 3.9667 0.0474

Lower 10 0.01 � X � 1 0.0794 0.0350 0.9386 — — 0.3421 —
35 0.01� X � 1 1.1950 0.1409 0.9185 — — 0.5954 —
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the calculated �H of viscous flow for suspensions
rises asymptotically to infinity, or to a solid body
viscosity, when �/�max approaches 1. Interest-
ingly, Lyons and Tobolsky28 found that an equa-
tion, identical to eq. 9, described the viscosity of
aqueous solutions of low molecular weight
polyoxyethylene in the entire range of concentra-
tions. Unfortunately, there was no follow-up to
this work.

Therefore, the kinetic approach enables us to
have a unified approach to the problem of zero-
shear viscosity of both solutions and suspensions.
How well the derived equation describes experi-
mental data is discussed next.

EXPERIMENTAL

No actual experimental work was performed in
this study. Instead, data from Ph.D. dissertations
of several researchers29–32 as well as publica-
tions33, 34 were analyzed to prove the hypothesis.
Therefore, this work can be considered as a meta-
study of the zero viscosity problem. Whenever
possible, solution concentrations were recalcu-
lated into volume fractions. In several cases, the
zero-shear viscosity had to be calculated by ex-
trapolating shear viscosity–shear rate data to the
zero shear rate.

A check of derived equations showed that eq. 5
was accurate but somewhat inconvenient to use.
Also, both eq. 5 and eq. 7 have three adjustable
constants. Therefore the literature data analysis
was carried out with eq. 7. To analyze data, eq. 7
has to be rearranged as follows:

�/RT ln �R � 1/KBMn � �/K (11)

The slope of a straight line yields a value of 1/K,
from which one can calculate value of K. From K
and the intercept, one can get a value of BMn. The
values of n and B can be found by plotting ln BMn

versus ln M (value of n cannot be found unless M
is known; like the value of a in the Mark–Hou-
wink equation). The calculations can be per-
formed using any spreadsheet software. To im-
prove the accuracy of the estimates and to obtain
the R2 of the overall fit, the data were fitted to eq.
7 using Newton’s method (with the preliminary
values of K, B, and n as starting values) with the
help of SAS nonlinear least square statistics pro-
cedure, PROC NLIN [SAS].35

RESULTS

Ashare29 and Harris30 studied shear-thinning
phenomena using identical monodisperse polysty-
rene solutions in chlorinated (Arochlor) solvents
using the same equipment. Because their results
are directly compatible, their data were combined
and extrapolated to zero shear conditions. Figure
6 shows how well experimental data are described
by eq. 7. The results, given in Table IV, show that
Arochlor(s) is a poor solvent for polystyrene (n
� 0.54) and the value of K was �50 KJ/mol. The
overall R2 was 0.998.

Hager31 studied the viscosity of monodisperse
polystyrene solutions in four different solvents
ranging from good (benzene) to very poor (cyclo-
pentane) at two temperatures. The results (Table
IV) also show a very good correlation (R2 � 0.97
for benzene, 2-butanone, and cyclohexane). Cyclo-
pentane, being a very poor solvent with both up-

Figure 5 Equation 7 on a log–log scale (upper curve).

Figure 4 Equation 7 on a log–log scale.
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per and low critical temperatures, had an R2 of
only 0.927.

Graessley et al.33 also studied the viscosity of
monodisperse polystyrene solutions in ethylben-
zene. The fit of his data to eq. 7 was very good
with the exception of points at high polymer con-
centration; after removal of the points with �
� 0.41, the overall R2 was 0.99. It is possible that
his solutions were close to a glass transition tem-
perature at high concentrations and could not be
adequately described by this equation.

Liu32 looked into the entanglement effects on
the viscosities and phase separation behavior of
polyisobutylene in dilute solutions in benzene.
His zero viscosity data include three polydimethyl
siloxane fractions at three temperatures. The
overall fit of eq. 7 was 0.992 and the value of K
was �50 KJ/mol.

Oyanagi and Matsumoto18 reported on viscos-
ities of aqueous solutions of poly(vinyl alcohol);
the most interesting part of their work was the
calculation of apparent Eact of viscous flow for
their solutions (Figure 1). The overall R2 was
0.998. Especially stunning is Figure 7 whereby
the values of 1/ ln(�R) are plotted against
1/C�M0.9518, and all 41 experimental points fell on
a single line with R2 � 0.998 (i.e., eq. 7 allows one
to “reduce” the experimental data).

Morton34 established a correlation between cel-
lulose viscosities in 0.5% cupriethylenediamine
(CED) solution and cellulose degree of polymer-
ization (DP) by converting the same cellulose
samples to cellulose tricarbonylates, dissolving
them in tetrahydrofuran (THF), and using gel
permeation chromatography (GPC)-low angle la-
ser spectroscopy (LALS) technique for the molec-
ular weight determination. CED solutions are
widely used in pulp and paper industry for a
one-point viscosity determination as a crude

proxy for DP. Morton used 13 cellulose samples
with a very wide range of CED viscosity (from 5 to
384 cP). His equation:

DP � 118.019 � CED2

� 598.404 � CED � 449.61 (12)

describes his data quite well (R2 � 0.995); how-
ever, it represents a typical polynomial and has
no physical meaning because it predicts negative
DP values at CED viscosities � 1.9 cP. Equation
7 describes Morton’s data up to CED viscosity of
100 cP (which is a much wider range than is dealt
with in the pulp and paper industry), with R2 of
0.988. The last two points (CED viscosity of 284
and 355.2 cP) represent cotton cellulose with very
high DP. It is possible that some degradation was
unavoidable during tricarbonylation of these
samples or that an undissolved high molecular
fraction was filtered out during samples prepara-
tion causing a distortion in the data because eq. 7
predicts higher DP values than experimentally
found.

Interestingly, values of K for rigid polymers
(polystyrene and cellulose) range between 30 and
110 KJ/mol, whereas the value of K for the flexible
poly(vinyl alcohol) was 9.23 KJ/mol and only 4.85
KJ/mol for the very flexible chains of polyisobuty-
lene. Comparing values of n and literature values
of Mark–Houwink integer a, we can see that, as a
rule, n � a, which is to be expected because at low
concentrations, eq. 7 can be approximated as:

�R � 1 � K�Mn/RT�1 � B�Mn� or

�R � 1 � K�Mn/�1 � B�Mn� (13)

Mathematically, the function K�Mn/ (1 � B�Mn)
should have a higher integer power of M than the
Mark–Houwink’s function, K�Ma to describe the
same data.

A further look at the results, presented in Ta-
ble IV, suggests that there is an inverse relation-
ship between the estimates of n and B (Figure 8).
Furthermore, it appears that B is related to the
stiffness of the same polymer chains in different
solvents (Figure 9). For instance, in the case of
polystyrene solutions in different solvents, B
� 0.0000458�n�7.5, with R2 � 0.973. Of course,
more data are needed before one can draw defi-
nite conclusions.

Table IV contains data of eight researchers
who studied rheological properties of four polar

Figure 6 Viscosity of polystyrene in Arochlor 48 at
25°C (adapted from Hager31).
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and nonpolar polymers in nine polar and nonpo-
lar solvents. The average fit of eq. 7 for all these
data was in excess of 0.98, which, probably coin-
cides with the accuracy of the original data.

Based on a kinetic approach, a modified ex-
ponential equation relating polymer solution
viscosity to the polymer concentration and mo-
lecular weight, was derived. This equation, con-
taining only three adjustable constants, accu-
rately (R2 �0.98) describes available data on
viscosity of polymeric solutions in a wide range
of concentrations (compare with equations de-
rived by G. Phillies36 that contain five adjust-
able constants). According to this equation, vis-
cosity is a continuous function of polymer con-
centration and molecular weight. The constants
of the eq. 7 do not change within studied limits
of the polymer concentration and molecular
weight for a given polymer–solvent system. It
opens a way for an accurate single-point DP
determination of polymers at moderate concen-

trations if constants K, B, and n of eq. 7 are
known (tabulated).

CONCLUSIONS

1. Based on kinetic considerations, the follow-
ing equation, connecting viscosity of poly-
meric solutions with temperature and poly-
mer molecular weight and concentration,
was derived:

RT ln �R � KB�Mn/�1 � B�Mn�

where �R is relative viscosity (i.e., the ratio
of the solution viscosity to the solvent vis-
cosity), K represents a change in the en-
thalpy of viscous flow from a pure solvent
to a pure polymer at the same temperature
or from a polymer of low to higher molecu-
lar weight and has the dimensions of en-
ergy, (e.g., J/mol) because the ratio B�Mn /
(1 � B�Mn) is dimensionless.
� is the volume fraction of a polymer in
solution (concentration units can be used in
dilute solutions), and B is a scaling con-
stant; at B�Mn �� 1, ln �R � K/RT. B
relates to the stiffness of the polymeric
chains in different solvents.

2. The equation describes published data on
the zero-shear viscosity of four polar and
nonpolar polymers in nine solvents with R2

� 0.98.
3. It is shown that the equation is a general

form of the Mark–Houwink equation, and
together with the similar in form Vand
equation, describes the viscosity of both
polymeric solutions and suspensions.

4. The equation allows the use of solutions of

Figure 9 The “n” – “B” relationship (ln–ln) scale.
Figure 7 Test of Langmuir equation for reduced
Oyanagi and Matsumoto18 data.

Figure 8 Relationship between values of “n” and “B”
(from Table IV).
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moderate concentration for the character-
ization of polymers and opens a way for a
single-point DP determination of polymers
at moderate concentrations if constants K,
B, and n of eq. 7 are known.

I am deeply indebted to individuals whose published
data were used in this work and to T. Sandry who read
the manuscript and made valuable suggestions.
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